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DECOMPOSING 40 BILLION INTEGERS 
BY FOUR TETRAHEDRAL NUMBERS 

CHUNG-CHIANG CHOU AND YUEFAN DENG 

ABSTRACT. Based upon a computer search performed on a massively parallel 
supercomputer, we found that any integer n less than 40 billion (40B) but 
greater than 343,867,can be written as a sum of four or fewer tetrahedral 
numbers. This result has established a new upper bound for a conjecture 
compared to an older one, 1B, obtained a year earlier. It also gives more 
accurate asymptotic forms for partitioning. 

All this improvement is a direct result of algorithmic advances in efficient 
memory and cpu utilizations. The heuristic complexity of the new algorithm 
is 0(n) compared with that of the old, 0(n5/3 log n). 

1. INTRODUCTION 

Both papers [1] and [2] have demonstrated the partitioning of integers into tetra- 
hedral numbers defined by 

(1) T(m) = (m - I)m(m + 1)/6, where m > 1, 

by means of computation. We denote a number n as a k-number if n is a sum of k 
tetrahedral numbers and is not a sum of fewer than k tetrahedral numbers. 

It can be shown with an explicit form of the circle method that all sufficiently 
large integers may be expressed as the sum of at most seven tetrahedral numbers. 
In [1], Deng and Yang reported that any integer satisfying 343,867 < n < lB 
can be written as a sum of four or fewer tetrahedral numbers based upon a search 
on a distributed-memory parallel computer. That paper also addressed the main 
issues in numerical study of the Waring problem dealing with the tetrahedral num- 
bers. The algorithm in [1] costs 0(n 4/3 log n) for searching all 3-numbers and 
0(n5/3 log n) for 4-numbers. We have improved that algorithm; it is now perfectly 
load balanced and costs 0(n) for all 3-numbers and 4-numbers. 

The main purpose of the present paper is to describe the fast search algorithm 
and the decomposition of 40 billion (40B) integers by four tetrahedral numbers. In 
?2, we report the decomposition results obtained on an Intel Paragon. In ?3, we 
discuss the asymptotic distribution of the partition. In ?4, we describe and analyze 
the algorithms in both sequential and parallel forms. The conclusion is given in ?5. 
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2. PARTITIONING 

Our main results concern Nk (n), defined as the number of k-numbers in the 
interval [1, n], and are tabulated in Table 1. They show that among all positive 
integers up to 40B, there are 241 that require five tetrahedral numbers to decompose 
while the rest of the integers require only four or fewer numbers. Summarizing the 
results, we obtain the following two theorems: 

Theorem 1. Any integer n4, satisfying 

343,867 < n4 < 40B 

can be written as a sum of four or fewer tetrahedral numbers. 

Proof. It is shown by the computer search results. LI 

Theorem 2. Any positive integer less than T(L) = 3,771,207,667,368,141 can be 
written as a sum of at most five tetrahedral numbers, where L = 282,842 is the 
largest integer for which 

T(L -1) -T(L -2) + 343,867 < 40B. 

Proof. We notice that T(6,214) < 40B. Thus we only need to show that all integers 
are sums of at most five tetrahedral numbers between T(6,214) and T(282,842). 
Between T(m) and T(m + 1) in the interval, we can divide all integers n into an 
upper group for which 

T(m) + 343,867 < n < T(m + 1), 

and a lower group for which 

T(m)< n < T(m) + 343,867. 

For an integer n in the upper group, n - T(m) satisfies 

343,867 < n- T(m) 
? T(m +1)- T(m) 
? T(L)-T(L-1) 
< 40B. 

By Theorem 1, n - T(m) is a sum of at most four tetrahedral numbers. Thus any 
upper group integer can be written as a sum of at most five tetrahedral numbers. 

For an integer n in the lower group, n satisfies 

343,867 < T(6,214) - T(6,213) 
< T(m)- T(m -1) 
< n - T(m - 1) 
< T(m) - T(m - 1) + 343,867 
< T(L- 1) -T(L -2) + 343,867 
< 40B. 

Thus any lower group integer can be written as a sum of at most five tetrahedral 
numbers. 

Therefore n is expressible as a sum of at most five tetrahedral numbers. LI 
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TABLE 1. This table shows the partitioning of integers in intervals 
of [1, 40B] into 1-, 2-, 3-, and 4-numbers. The count for 5-numbers 
in the interval is always 241 

n I Ni(n) [ N2(n) N3(n) [ N4(n) 
lB 1816 1451433 446186613 552359897 
2B 2288 2305850 892371789 1105319832 
3B 2619 3022708 1338554381 1658420051 
4B 2883 3662773 1784740032 2211594071 
5B 3106 4251139 2230917514 2764828000 
6B 3300 4801163 2677128667 3318066629 
7B 3475 5321470 3123320579 3871354235 
8B 3633 5817556 3569522288 4424656282 
9B 3778 6293201 4015712155 4977990625 

lOB 3913 6751629 4461907459 5531336758 
i1B 4040 7195117 4908109379 6084691223 

12B 4159 7625308 5354324211 6638046081 
13B 4271 8043637 5800524169 7191427682 
14B 4378 8451444 6246745411 7744798526 
15B 4480 8849600 6692919707 8298225972 
16B 4577 9238954 7139115585 8851640643 
17B 4671 9620463 7585316341 9405058284 
18B 4761 9994496 8031509522 9958490980 
19B 4847 10361548 8477729794 10511903570 
20B 4931 10722454 8923960648 11065311726 
21B 5012 11077314 9370195643 11618721790 
22B 5090 11426471 9816423186 12172145012 
23B 5166 11770443 10262650165 12725573985 
24B 5240 12109499 10708861927 13279023093 
25B 5312 12443900 11155100736 13832449811 
26B 5382 12773820 11601314350 14385906207 
27B 5450 13099528 12047546214 14939348567 
28B 5516 13421136 12493762218 15492810889 
29B 5581 13739108 12939981218 16046273852 
30B 5645 14053525 13386220456 16599720133 
31B 5707 14364339 13832441607 17153188106 
32B 5767 14671671 14278651078 17706671243 
33B 5827 14976174 14724888917 18260128841 
34B 5885 15277361 15171100697 18813615816 
35B 5942 15575632 15617322681 19367095504 
36B 5999 15871123 16063531674 19920590963 
37B 6054 16164040 16509743411 20474086254 
38B 6108 16454234 16955977213 21027562204 
39B 6161 16741875 17402189913 21581061810 
40B 6213 17027016 17848425479 22134541051 

Using a similar argument, we can prove that any positive integer less than 1.09 x 
1023 can be expressed as a sum of at most six tetrahedral numbers, and so on. 

With these results and asymptotic analysis to be discussed in ?3, we attempt to 
give the following 
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Conjecture 1. Any integer, greater than 343,867, is expressible as the sum of at 
most four tetrahedral numbers. 

3. ASYMPTOTIC FORM 

In this section we want to see how Nk(n) behaves as n -> oo, i.e., the asymptotic 
partitioning of integer n. 

Define the density of k-numbers by 

Pk(n) = Nk(n) /n. 

Figure 1 shows p3(n) and p4(n) as a function of integer n < 40B, respectively. 
For k = 1, N1 (n) = m - 1 where m is the largest number with 

n > (m - 1)m(m + 1)/6. 

For k = 2, we found that N2(n), with 400 data points uniformly distributed in 
0 < n < 40B, can be fitted to a quadratic form 

N2(rn) 1L.457936n2/3 - 10.388235n1/3 + 1169J. 

The error in this fit is +64. The first coefficient is understood. From a more 
elaborate analysis [1] we found the first coefficient ought to be 1.458326. The 
earlier paper [1] reported a coefficient of 1.457195 with a relative error of about 
0.08%. The new result has only a relative error of 0.03%. In fact, this number can 
be obtained exactly by the method of Hooley [3]. 

Similar fits to N3(n) and N4(n) give leading terms 0.446244 and 0.553752 re- 
spectively. We thus make the following 

Conjecture 2. There exist positive constants C2, c3, and c4 with c3 + C4 = 1 such 
that as n - oo, 

N2((n) ' C2n 

N3(n) - C3n, 
N4((n) - c4n. 

Our numerical experiments suggest that C2 1.458326, C3 0.446244, C4 

0.553752. Obviously, C3 + C4 1, which means N3(n) and N4(n) constitute almost 
all of the tetrahedral partitions up to n. As mentioned above, N2(n) c2nr2/3 as 
n > oo can be shown using the method of [3]. 
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FIGURE 1. These two figures show p3(n) vs. n (top) and p4(n) 
vs. n (bottom). Asymptotic values (n -+ oo) for P3 and P4 are 
0.446244 and 0.553752 respectively 
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4. THE SEARCH ALGORITHMS 

We performed all of our decompositions on a 56-node distributed-memory MIMD 
supercomputer Intel Paragon XP/S with a local memory of 32 megabytes per 
node (of which 25 megabytes is user-accessible). Due to the constraint of machine 
word length, all positive integers greater than two billion are represented by double 
floating points. 

4.1. Sequential algorithm. This algorithm, naturally revised from [1], only works 
for n less than nmax = 3.3B due to memory limitation. 

Before searching, we construct three tables: a 1-number table Jl[jl] that con- 
tains the sorted lists of all 1-numbers less than nmax (obviously, jl is the running 
counter for the JI-table), a 2-number table J2[j2], and a 5-number table J5[j5c]. 
For the J5-table, we only tabulate the 241 5-numbers found in [1]. 

Algorithm 1 
(1) Set j1 = j2 = 1. 
(2) If n = Jl[jl], n is a 1-number and set jl jl + 1. 

Otherwise, next step: 
(3) If n = J2[j2], n is a 2-number and set j2 j2 + 1. 

Otherwise, next step: 
(4) For all pi = Jl[jl] < n, if n - pi is a 2-number by binary search, 

n is 3-number. 
Otherwise, next step: 

(5) If n - 1 is a 3-number, but n is not, then n must be a 4-number. 
Otherwise, next step: 

(6) For all P2 = J2[j2] < n, if n - P2 is a 2-number by binary search, 
n is 4-number. 
Otherwise, next step: 

(7) Search n from the 5-number table. If no match, there are two 
possibilities: 
(1) the 5-number table is incomplete; or 
(2) the Conjecture 1 is false. 

The cost for Steps 2 and 3 is 0(1). It is comparatively negligible for the cost of 
searching all 1- and 2-numbers. For Step 4, the cost for searching in P1 is 0(nl/3) 

and that in n-p1 is 0(log n), leading to a cost of Q(nl/3 log n) for checking whether 
n is a 3-number or not. Therefore, the total cost to check all k E [1, n] is equal to 
the summation 

n n3 
>3 k1/3 g k /3 l l4/3 logn q - 4/3) Cn 4/3 log n, 

whereC= C . Similarly, for Step 6, the cost for searching in P2 is 0(n2/3) and 
that in n -P2 is log n, leading to a cost of 0(n2/3 log n) for checking whether n is 
a 4-number or not. Therefore, the total cost to check all k E [1, n] is less than the 
summation 

n rn3 
p4 >3 k2/3 log k < p4 q2/3 log qdq = D(n5/3 logn-5n5/3) 1 Dn5/3 logn, 

where D = P45 i3n1 and p4 is the density asymptotic value of a 4-number. 
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4.2. Parallel algorithm for large numbers. Large numbers cause three types of 
problems: number representation, large memory requirements, and extensive search 
time. We are constructing a set of fast algorithms including data distribution for 
saving space and search distribution for saving time that will overcome these 
difficulties. The essence of our new algorithms lies in cutting a large number to 
smaller ones that need decomposition. The search for small numbers will employ 
some of the algorithms described in ?4.1. Parallelization made storing large tables 
possible. 

The fact that the searching time is a priori unknown for a given number makes 
it difficult to balance loads on the processors. The parallel paradigm we are using is 
similar to the master-slave method except that the master also performs large-load 
calculation. When given an interval of integers, we first decompose the interval into 
an s sub-interval ("grain") with equal number of integers in each. One processor 
(any one) in the system, we call it the "working master", keeps a list of these grains. 
To start, every one of the p processors (including the master) is given a grain to 
work on. If a slave processor finishes its grain it will inform the master which 
marks the grain as "done". At the same time, the master will issue another grain. 
This process is repeated by every processor until the last grain is processed. This 
algorithm has three properties that lead to an extremely high parallel efficiency. 
First, the number of grains can always be made much larger than the number of 
processors. Therefore, the load imbalance is invisible. Second, the communication 
cost to fetch a task (getting a grain from the master) is infinitesimal compared to 
the time needed to process the grain. There the communication costs are ignorable. 
As usual, the smaller the grain, the bigger the communication due to more frequent 
requests to the master for grains, but the smaller the load imbalance. On the other 
hand, the bigger the grain, the smaller the communication due to less frequent 
requests to the master for grains, but the bigger the load imbalance. Therefore, 
there is an optimal value (or a range) for the grain size to achieve maximum parallel 
efficiency we choose a grain size of 5 million (5M). Third, the master also sends 
itself a grain while it is coordinating the slave processors for their grains. 

Now, we explain the scheme. Before searching we still construct three tables: a 
1-number table Jl[jl] that contains the sorted lists of all 1-numbers less than nmax 
(=40B for the present study), and a 5-number table J5[j5]. For the J5-table, we 
only tabulate the 241 5-numbers found in [1], [2]. During searching we construct 
two additional "dynamic" tables, a 2-number table K2[k2] in a variable interval in 
every processor, and a rough 3-number table K3[k3, p], allowing to contain 1- and 
2-numbers, in a variable interval in each processor, due to having problem with 
storing the whole tables of 2-numbers and 3-numbers. Table K2[k2] consists of all 
2-numbers in the next interval and we set it as [N, N+ 1B]. However table K3[k3, p] 
consists of a much shorter interval than table K2[k2] and there are several features 
that need explanation. This table depends on the processor where it resides and 
the number the table is used to decompose. 

In summary, 
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Algorithm 2 
(1) For each 1i, construct K2-table in every processor. 

Reset index k2 = 1. 
(2) For each 5M, assign a new grain in each processor. 

Construct K3-table. 
Reset index k3= 1. 
Find the smallest jl such that Jl[jl] > n. 

(3) If n = Jl[jl], n must be a 1-number and set jl z jl + 1: While 
n = K3[k3], k3 k3 +1. 
Otherwise, next step: 

(4) If n = K2[k2], n must be a 2-number and set k2 Q k2 + 1: While 
n = K3[k3], z k3+ 1. 
Otherwise, next step: 

(5) If n = K3[k3], n must be a 3-number and set k3 W k3 + 1. 
Otherwise, next step: 

(6) If n - 1 is a 3-number and n is not a 3-number, then n must be a 
4-number. 
Otherwise, next step: 

(7) For r = 1, 2,... ,70, if n - Jl1[r] is a 3-number in K3-table, n 
must be a 4-number and stop. If all failsa, n would be a k-number 
where k > 4. 

aFor our search with n up to 40B, we have not seen this case. 

Now, we estimate the complexity of this algorithm. It is obvious that the cost 
of searching all 3-numbers is reduced to 0(n). However there exists a big constant 
for the complexity due to routine search for a 3-number of new grain. The cost of 
searching a 4-number consists of two parts: cutting and searching. First, the cost 
incurred during cutting is finite and small. Second, we show the cost in search per 
se is 0(n). Suppose the integer n to be searched satisfies 

T(m) < n < T(m + 1). 

We then define a remainder A/(r) = n-T(r). The job is to confirm at limited r that 
A(r) is a 3-number. Obviously, r = 1 is the best scenario get the decomposition 
done at the first cut and the remainder is the smallest possible number required 
decomposition. If A(r = 1) fails to satisfy the conjecture, move to check A(r = 2), 
then move to check A(r = 3), until A(r = rmax) when the conjecture is satisfied. 
According to the computation, we find that (a) rmax = 68, and (b) most of r is less 
than 30 to complete the search. In summary, the time to search for all 3-numbers 
up to n is 0(n). The time necessary to check whether n is a 4-number when it is 
not a 3-number is at worst 0(nl/3). Heuristically, it is nearly independent of n, 
i.e., 0(1). Therefore, the time to decompose the numbers up to n, heuristically, is 
0(n). 

5. CONCLUSIONS 

We have addressed three related points in this paper. First, we have for the 
first time decomposed integers up to 40B by tetrahedral numbers and found at 
most five tetrahedral numbers are necessary for such a decomposition. Second, we 
have obtained conjectural asymptotic forms for the decomposition. Third, a more 
efficient and parallel algorithm is derived. In addition, we make the conjecture 



DECOMPOSING 40 BILLION INTEGERS BY FOUR TETRAHEDRAL NUMBERS 901 

that any integer greater than 343, 867 is expressible as the sum of at most four 
tetrahedral numbers. 
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