
MATHEMATICS OF COMPUTATION
Volume 66, Number 218, April 1997, Pages 893-901
S 0025-5718(97)00818-1

DECOMPOSING 40 BILLION INTEGERS
BY FOUR TETRAHEDRAL NUMBERS

CHUNG-CHIANG CHOU AND YUEFAN DENG

ABSTRACT. Based upon a computer search performed on a massively parallel
supercomputer, we found that any integer n less than 40 billion (40B) but
greater than 343,867,can be written as a sum of four or fewer tetrahedral
numbers. This result has established a new upper bound for a conjecture
compared to an older one, 1B, obtained a year earlier. It also gives more
accurate asymptotic forms for partitioning.

All this improvement is a direct result of algorithmic advances in efficient
memory and cpu utilizations. The heuristic complexity of the new algorithm
is 0(n) compared with that of the old, 0(n5/3 log n).

1. INTRODUCTION

Both papers [1] and [2] have demonstrated the partitioning of integers into tetra-
hedral numbers defined by

(1) T(m) = (m - I)m(m + 1)/6, where m > 1,

by means of computation. We denote a number n as a k-number if n is a sum of k
tetrahedral numbers and is not a sum of fewer than k tetrahedral numbers.

It can be shown with an explicit form of the circle method that all sufficiently
large integers may be expressed as the sum of at most seven tetrahedral numbers.
In [1], Deng and Yang reported that any integer satisfying 343,867 < n < lB
can be written as a sum of four or fewer tetrahedral numbers based upon a search
on a distributed-memory parallel computer. That paper also addressed the main
issues in numerical study of the Waring problem dealing with the tetrahedral num-
bers. The algorithm in [1] costs 0(n 4/3 log n) for searching all 3-numbers and
0(n5/3 log n) for 4-numbers. We have improved that algorithm; it is now perfectly
load balanced and costs 0(n) for all 3-numbers and 4-numbers.

The main purpose of the present paper is to describe the fast search algorithm
and the decomposition of 40 billion (40B) integers by four tetrahedral numbers. In
?2, we report the decomposition results obtained on an Intel Paragon. In ?3, we
discuss the asymptotic distribution of the partition. In ?4, we describe and analyze
the algorithms in both sequential and parallel forms. The conclusion is given in ?5.

Received by the editor February 20, 1995 and, in revised form, May 22, 1995 and March 27,
1996.

1991 Mathematics Subject Classification. Primary IIP05, 65Y05, 68Q25.
Key words and phrases. Waring's problem, parallel computing, asymptotic form.

?)1997 American Mathematical Society

893

894 CHUNG-CHIANG CHOU AND YUEFAN DENG

2. PARTITIONING

Our main results concern Nk (n), defined as the number of k-numbers in the
interval [1, n], and are tabulated in Table 1. They show that among all positive
integers up to 40B, there are 241 that require five tetrahedral numbers to decompose
while the rest of the integers require only four or fewer numbers. Summarizing the
results, we obtain the following two theorems:

Theorem 1. Any integer n4, satisfying

343,867 < n4 < 40B

can be written as a sum of four or fewer tetrahedral numbers.

Proof. It is shown by the computer search results. LI

Theorem 2. Any positive integer less than T(L) = 3,771,207,667,368,141 can be
written as a sum of at most five tetrahedral numbers, where L = 282,842 is the
largest integer for which

T(L -1) -T(L -2) + 343,867 < 40B.

Proof. We notice that T(6,214) < 40B. Thus we only need to show that all integers
are sums of at most five tetrahedral numbers between T(6,214) and T(282,842).
Between T(m) and T(m + 1) in the interval, we can divide all integers n into an
upper group for which

T(m) + 343,867 < n < T(m + 1),

and a lower group for which

T(m)< n < T(m) + 343,867.

For an integer n in the upper group, n - T(m) satisfies

343,867 < n- T(m)
? T(m +1)- T(m)
? T(L)-T(L-1)
< 40B.

By Theorem 1, n - T(m) is a sum of at most four tetrahedral numbers. Thus any
upper group integer can be written as a sum of at most five tetrahedral numbers.

For an integer n in the lower group, n satisfies

343,867 < T(6,214) - T(6,213)
< T(m)- T(m -1)
< n - T(m - 1)
< T(m) - T(m - 1) + 343,867
< T(L- 1) -T(L -2) + 343,867
< 40B.

Thus any lower group integer can be written as a sum of at most five tetrahedral
numbers.

Therefore n is expressible as a sum of at most five tetrahedral numbers. LI

DECOMPOSING 40 BILLION INTEGERS BY FOUR TETRAHEDRAL NUMBERS 895

TABLE 1. This table shows the partitioning of integers in intervals
of [1, 40B] into 1-, 2-, 3-, and 4-numbers. The count for 5-numbers
in the interval is always 241

n I Ni(n) [N2(n) N3(n) [N4(n)
lB 1816 1451433 446186613 552359897
2B 2288 2305850 892371789 1105319832
3B 2619 3022708 1338554381 1658420051
4B 2883 3662773 1784740032 2211594071
5B 3106 4251139 2230917514 2764828000
6B 3300 4801163 2677128667 3318066629
7B 3475 5321470 3123320579 3871354235
8B 3633 5817556 3569522288 4424656282
9B 3778 6293201 4015712155 4977990625

lOB 3913 6751629 4461907459 5531336758
i1B 4040 7195117 4908109379 6084691223

12B 4159 7625308 5354324211 6638046081
13B 4271 8043637 5800524169 7191427682
14B 4378 8451444 6246745411 7744798526
15B 4480 8849600 6692919707 8298225972
16B 4577 9238954 7139115585 8851640643
17B 4671 9620463 7585316341 9405058284
18B 4761 9994496 8031509522 9958490980
19B 4847 10361548 8477729794 10511903570
20B 4931 10722454 8923960648 11065311726
21B 5012 11077314 9370195643 11618721790
22B 5090 11426471 9816423186 12172145012
23B 5166 11770443 10262650165 12725573985
24B 5240 12109499 10708861927 13279023093
25B 5312 12443900 11155100736 13832449811
26B 5382 12773820 11601314350 14385906207
27B 5450 13099528 12047546214 14939348567
28B 5516 13421136 12493762218 15492810889
29B 5581 13739108 12939981218 16046273852
30B 5645 14053525 13386220456 16599720133
31B 5707 14364339 13832441607 17153188106
32B 5767 14671671 14278651078 17706671243
33B 5827 14976174 14724888917 18260128841
34B 5885 15277361 15171100697 18813615816
35B 5942 15575632 15617322681 19367095504
36B 5999 15871123 16063531674 19920590963
37B 6054 16164040 16509743411 20474086254
38B 6108 16454234 16955977213 21027562204
39B 6161 16741875 17402189913 21581061810
40B 6213 17027016 17848425479 22134541051

Using a similar argument, we can prove that any positive integer less than 1.09 x
1023 can be expressed as a sum of at most six tetrahedral numbers, and so on.

With these results and asymptotic analysis to be discussed in ?3, we attempt to
give the following

896 CHUNG-CHIANG CHOU AND YUEFAN DENG

Conjecture 1. Any integer, greater than 343,867, is expressible as the sum of at
most four tetrahedral numbers.

3. ASYMPTOTIC FORM

In this section we want to see how Nk(n) behaves as n -> oo, i.e., the asymptotic
partitioning of integer n.

Define the density of k-numbers by

Pk(n) = Nk(n) /n.

Figure 1 shows p3(n) and p4(n) as a function of integer n < 40B, respectively.
For k = 1, N1 (n) = m - 1 where m is the largest number with

n > (m - 1)m(m + 1)/6.

For k = 2, we found that N2(n), with 400 data points uniformly distributed in
0 < n < 40B, can be fitted to a quadratic form

N2(rn) 1L.457936n2/3 - 10.388235n1/3 + 1169J.

The error in this fit is +64. The first coefficient is understood. From a more
elaborate analysis [1] we found the first coefficient ought to be 1.458326. The
earlier paper [1] reported a coefficient of 1.457195 with a relative error of about
0.08%. The new result has only a relative error of 0.03%. In fact, this number can
be obtained exactly by the method of Hooley [3].

Similar fits to N3(n) and N4(n) give leading terms 0.446244 and 0.553752 re-
spectively. We thus make the following

Conjecture 2. There exist positive constants C2, c3, and c4 with c3 + C4 = 1 such
that as n - oo,

N2((n) ' C2n

N3(n) - C3n,
N4((n) - c4n.

Our numerical experiments suggest that C2 1.458326, C3 0.446244, C4

0.553752. Obviously, C3 + C4 1, which means N3(n) and N4(n) constitute almost
all of the tetrahedral partitions up to n. As mentioned above, N2(n) c2nr2/3 as
n > oo can be shown using the method of [3].

DECOMPOSING 40 BILLION INTEGERS BY FOUR TETRAHEDRAL NUMBERS 897

0.446244

0.44622 -

0.44618 -_ _ _ _ _ _ _

0.44614 - _

0.44610-

0.44606 - _ _

0.44602 - _ _ _ _ _ _ _ _

0.44598 =_______________ ____

0.1B 0.3B 1B 3B 10B 30B

0.553752

0.5532 -_ _ _ _ _

0.5528 - _ _ _ _

0.5524 -_ _ _ _ _

0.5520 -

0.5516 -

0.5512 -

0.5508

0.1B 0.3B 1B 3B 1OB 30B

FIGURE 1. These two figures show p3(n) vs. n (top) and p4(n)
vs. n (bottom). Asymptotic values (n -+ oo) for P3 and P4 are
0.446244 and 0.553752 respectively

898 CHUNG-CHIANG CHOU AND YUEFAN DENG

4. THE SEARCH ALGORITHMS

We performed all of our decompositions on a 56-node distributed-memory MIMD
supercomputer Intel Paragon XP/S with a local memory of 32 megabytes per
node (of which 25 megabytes is user-accessible). Due to the constraint of machine
word length, all positive integers greater than two billion are represented by double
floating points.

4.1. Sequential algorithm. This algorithm, naturally revised from [1], only works
for n less than nmax = 3.3B due to memory limitation.

Before searching, we construct three tables: a 1-number table Jl[jl] that con-
tains the sorted lists of all 1-numbers less than nmax (obviously, jl is the running
counter for the JI-table), a 2-number table J2[j2], and a 5-number table J5[j5c].
For the J5-table, we only tabulate the 241 5-numbers found in [1].

Algorithm 1
(1) Set j1 = j2 = 1.
(2) If n = Jl[jl], n is a 1-number and set jl jl + 1.

Otherwise, next step:
(3) If n = J2[j2], n is a 2-number and set j2 j2 + 1.

Otherwise, next step:
(4) For all pi = Jl[jl] < n, if n - pi is a 2-number by binary search,

n is 3-number.
Otherwise, next step:

(5) If n - 1 is a 3-number, but n is not, then n must be a 4-number.
Otherwise, next step:

(6) For all P2 = J2[j2] < n, if n - P2 is a 2-number by binary search,
n is 4-number.
Otherwise, next step:

(7) Search n from the 5-number table. If no match, there are two
possibilities:
(1) the 5-number table is incomplete; or
(2) the Conjecture 1 is false.

The cost for Steps 2 and 3 is 0(1). It is comparatively negligible for the cost of
searching all 1- and 2-numbers. For Step 4, the cost for searching in P1 is 0(nl/3)

and that in n-p1 is 0(log n), leading to a cost of Q(nl/3 log n) for checking whether
n is a 3-number or not. Therefore, the total cost to check all k E [1, n] is equal to
the summation

n n3
>3 k1/3 g k /3 l l4/3 logn q - 4/3) Cn 4/3 log n,

whereC= C . Similarly, for Step 6, the cost for searching in P2 is 0(n2/3) and
that in n -P2 is log n, leading to a cost of 0(n2/3 log n) for checking whether n is
a 4-number or not. Therefore, the total cost to check all k E [1, n] is less than the
summation

n rn3
p4 >3 k2/3 log k < p4 q2/3 log qdq = D(n5/3 logn-5n5/3) 1 Dn5/3 logn,

where D = P45 i3n1 and p4 is the density asymptotic value of a 4-number.

DECOMPOSING 40 BILLION INTEGERS BY FOUR TETRAHEDRAL NUMBERS 899

4.2. Parallel algorithm for large numbers. Large numbers cause three types of
problems: number representation, large memory requirements, and extensive search
time. We are constructing a set of fast algorithms including data distribution for
saving space and search distribution for saving time that will overcome these
difficulties. The essence of our new algorithms lies in cutting a large number to
smaller ones that need decomposition. The search for small numbers will employ
some of the algorithms described in ?4.1. Parallelization made storing large tables
possible.

The fact that the searching time is a priori unknown for a given number makes
it difficult to balance loads on the processors. The parallel paradigm we are using is
similar to the master-slave method except that the master also performs large-load
calculation. When given an interval of integers, we first decompose the interval into
an s sub-interval ("grain") with equal number of integers in each. One processor
(any one) in the system, we call it the "working master", keeps a list of these grains.
To start, every one of the p processors (including the master) is given a grain to
work on. If a slave processor finishes its grain it will inform the master which
marks the grain as "done". At the same time, the master will issue another grain.
This process is repeated by every processor until the last grain is processed. This
algorithm has three properties that lead to an extremely high parallel efficiency.
First, the number of grains can always be made much larger than the number of
processors. Therefore, the load imbalance is invisible. Second, the communication
cost to fetch a task (getting a grain from the master) is infinitesimal compared to
the time needed to process the grain. There the communication costs are ignorable.
As usual, the smaller the grain, the bigger the communication due to more frequent
requests to the master for grains, but the smaller the load imbalance. On the other
hand, the bigger the grain, the smaller the communication due to less frequent
requests to the master for grains, but the bigger the load imbalance. Therefore,
there is an optimal value (or a range) for the grain size to achieve maximum parallel
efficiency we choose a grain size of 5 million (5M). Third, the master also sends
itself a grain while it is coordinating the slave processors for their grains.

Now, we explain the scheme. Before searching we still construct three tables: a
1-number table Jl[jl] that contains the sorted lists of all 1-numbers less than nmax
(=40B for the present study), and a 5-number table J5[j5]. For the J5-table, we
only tabulate the 241 5-numbers found in [1], [2]. During searching we construct
two additional "dynamic" tables, a 2-number table K2[k2] in a variable interval in
every processor, and a rough 3-number table K3[k3, p], allowing to contain 1- and
2-numbers, in a variable interval in each processor, due to having problem with
storing the whole tables of 2-numbers and 3-numbers. Table K2[k2] consists of all
2-numbers in the next interval and we set it as [N, N+ 1B]. However table K3[k3, p]
consists of a much shorter interval than table K2[k2] and there are several features
that need explanation. This table depends on the processor where it resides and
the number the table is used to decompose.

In summary,

900 CHUNG-CHIANG CHOU AND YUEFAN DENG

Algorithm 2
(1) For each 1i, construct K2-table in every processor.

Reset index k2 = 1.
(2) For each 5M, assign a new grain in each processor.

Construct K3-table.
Reset index k3= 1.
Find the smallest jl such that Jl[jl] > n.

(3) If n = Jl[jl], n must be a 1-number and set jl z jl + 1: While
n = K3[k3], k3 k3 +1.
Otherwise, next step:

(4) If n = K2[k2], n must be a 2-number and set k2 Q k2 + 1: While
n = K3[k3], z k3+ 1.
Otherwise, next step:

(5) If n = K3[k3], n must be a 3-number and set k3 W k3 + 1.
Otherwise, next step:

(6) If n - 1 is a 3-number and n is not a 3-number, then n must be a
4-number.
Otherwise, next step:

(7) For r = 1, 2,... ,70, if n - Jl1[r] is a 3-number in K3-table, n
must be a 4-number and stop. If all failsa, n would be a k-number
where k > 4.

aFor our search with n up to 40B, we have not seen this case.

Now, we estimate the complexity of this algorithm. It is obvious that the cost
of searching all 3-numbers is reduced to 0(n). However there exists a big constant
for the complexity due to routine search for a 3-number of new grain. The cost of
searching a 4-number consists of two parts: cutting and searching. First, the cost
incurred during cutting is finite and small. Second, we show the cost in search per
se is 0(n). Suppose the integer n to be searched satisfies

T(m) < n < T(m + 1).

We then define a remainder A/(r) = n-T(r). The job is to confirm at limited r that
A(r) is a 3-number. Obviously, r = 1 is the best scenario get the decomposition
done at the first cut and the remainder is the smallest possible number required
decomposition. If A(r = 1) fails to satisfy the conjecture, move to check A(r = 2),
then move to check A(r = 3), until A(r = rmax) when the conjecture is satisfied.
According to the computation, we find that (a) rmax = 68, and (b) most of r is less
than 30 to complete the search. In summary, the time to search for all 3-numbers
up to n is 0(n). The time necessary to check whether n is a 4-number when it is
not a 3-number is at worst 0(nl/3). Heuristically, it is nearly independent of n,
i.e., 0(1). Therefore, the time to decompose the numbers up to n, heuristically, is
0(n).

5. CONCLUSIONS

We have addressed three related points in this paper. First, we have for the
first time decomposed integers up to 40B by tetrahedral numbers and found at
most five tetrahedral numbers are necessary for such a decomposition. Second, we
have obtained conjectural asymptotic forms for the decomposition. Third, a more
efficient and parallel algorithm is derived. In addition, we make the conjecture

DECOMPOSING 40 BILLION INTEGERS BY FOUR TETRAHEDRAL NUMBERS 901

that any integer greater than 343, 867 is expressible as the sum of at most four
tetrahedral numbers.

ACKNOWLEDGEMENTS

We would like to extend our appreciation to Professor C. N. Yang for encourage-
ment and active discussion in many stages of the project. We thank the anonymous
referee for his/her valuable comments.

REFERENCES

[1] Y. Deng and C. N. Yang, Waring's problem for pyramidal numbers, Science in China (Series
A) 37(1994) 277-283. MR 95m:11109

[2] H. E. Salzer and N. Levine, Table of integers not exceeding 1000000 that are not expressible as
the sum of four tetrahedral numbers, Mathematics Tables and Other Aids to Computation,
12 (1958) 141-144. MR 20:6194

[3] C. Hooley, On the representations of a number as the sum of two cubes, Math Z. 82 (1963)
259-266. MR 27:5742

DEPARTMENT OF MATHEMATICS, NATIONAL CHANGHUA UNIVERSITY OF EDUCATION,

CHANGHUA 50058, TAIWAN

CENTER FOR SCIENTIFIC COMPUTING, STATE UNIVERSITY OF NEW YORK AT STONY BROOK,

STONY BROOK, NEW YORK 11794
URL: http: //ams. sunysb. edu/-deng

	Cit r428_c429:

